Thermodynamics
Available since Sierra v1.5.0.
The ThermodynamicsInput
can be used to straightforwardly calculate gas-phase thermodynamic quantities.
The results of a ThermodynamicsInput
calculation are stored in the ThermodynamicsResult
object.
Example
The following examples demonstrate how to perform a thermodynamics calculation:
import sierra
from sierra.inputs import *
water = Molecule(pubchem="water")
# Calculate thermodynamic properties for water at GFN1-xTB level of theory
thermo_inp = ThermodynamicsInput(molecule=water, method=XTBMethod(model="GFN1"))
thermo_result = sierra.run(thermo_inp)
print("Thermodynamic properties for water:")
#> Thermodynamic properties for water:
print(thermo_result.gibbs_free_energy_total)
#> -5.767088376878814
print(thermo_result.heat_capacity)
#> 9.620470385781352e-06
ThermodynamicsInput
Fields
All of the fields in SingleInput and the following:
temperature
-
The temperature for which thermodynamic quantities are calculated.
- Type:
TemperatureQuantity
- Default: 300 K
- Type:
pressure
-
The pressure for which thermodynamic quantities are calculated.
- Type:
PressureQuantity
- Default: 1 atm
- Type:
ThermodynamicsResult
Fields
All of the fields in SingleResult and the following. For each field labeled *_correction
, there is a corresponding field *_total
. E.g: internal_energy_correction
and internal_energy_total
. In each case, the *_total
value is the sum of the correction and the reference_energy
.
reference_energy
-
The energy on top of which thermodynamic contributions of the energy are added. Usually, this is the electronic energy.
- Type:
EnergyQuantity
- Type:
internal_energy_correction
-
The internal energy of the system, relative to the
reference_energy
. Theinternal_energy_total
can be obtained asU = reference_energy + internal_energy_correction
.- Type:
EnergyQuantity
- Type:
internal_energy_total
-
The total internal energy of the system,
U = reference_energy + internal_energy_correction
.- Type:
EnergyQuantity
- Type:
enthalpy_correction
-
The enthalpy (H) of the system, relative to the
reference_energy
.- Type:
EnergyQuantity
- Type:
enthalpy_total
-
The total enthalpy (H) of the system,
H = reference_energy + enthalpy_correction
.- Type:
EnergyQuantity
- Type:
entropy
-
The total entropy (S) of the system.
- Type:
EntropyQuantity
- Type:
gibbs_free_energy_correction
-
The Gibbs free energy,
G = H - TS
, relative to thereference_energy
.- Type:
EnergyQuantity
- Type:
gibbs_free_energy_total
-
The total Gibbs free energy,
G = reference_energy + gibbs_free_energy_correction
.- Type:
EnergyQuantity
- Type:
zero_point_energy_correction
-
The zero-point vibrational energy of the system, i.e. the energy due to molecular motion at zero Kelvin, relative to the
reference_energy
.- Type:
EnergyQuantity
- Type:
zero_point_energy_total
-
For consistency, this value is defined as
reference_energy + zero_point_energy_correction
.- Type:
EnergyQuantity
- Type:
heat_capacity
-
The heat capacity at constant pressure.
- Type:
EntropyQuantity
- Type: